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Abstract. This paper is motivated by the fact that, although temperature readings made by Vaisala RS41 radiosondes at

GRUAN sites (www.gruan.org) are given at 1 s resolution, for various reasons, missing data are spread along the atmospheric

profile. Such a problem is quite common in radiosonde data and other profile data. Hence, (linear) interpolation is often used

to fill the gaps in published data products. In this perspective, the present paper considers interpolation uncertainty. To do this,

a statistical approach is introduced giving some understanding of the consequences of substituting missing data by interpolated5

ones.

In particular, a general frame for the computation of interpolation uncertainty based on a Gaussian process (GP) set-up

is developed. Using the GP characteristics, a simple formula for computing the linear interpolation standard error is given.

Moreover, the GP interpolation is proposed as it provides an alternative interpolation method with its standard error.

For the Vaisala RS41, the two approaches are shown to give similar interpolation performances using an extensive cross-10

validation approach based on the block-bootstrap technique. Statistical results about interpolation uncertainties at various

GRUAN sites and for various missing gap lengths are provided. Since both provide an underestimation of the cross-validation

interpolation uncertainty, a bootstrap-based correction formula is proposed.

Using the root mean square error, it is found that, for short gaps, with an average length of 5 s, the average uncertainty is

smaller than 0.10 K. For larger gaps, it increases up to 0.35 K for an average gap length of 30 s, and up to 0.58 K for a gap of15

60 s.

1 Introduction

The quality of climate variable profiles in the upper troposphere - lower stratosphere (UTLS) is relevant in various scien-

tific fields. In particular, it is important for numerical weather prediction, satellite observation validation and climate change

understanding, including extreme events such as droughts and tornadoes.20

The GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN, www.gruan.org) is a network for

reference measurements of UTLS (Seidel et al., 2009; Bodeker et al., 2016). Immler et al. (2010) discussed the concepts of ref-

erence measurements, traceability, full metadata description, a proper manufacturer-independent instrument characterization,

and the assessment of measurement uncertainties for upper-air observations.
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In this frame, GRUAN data processing for the Vaisala RS92 radiosonde was developed to meet the above criteria for refer-25

ence measurements (Dirksen et al., 2014). The related data product is characterised not only by the above mentioned metro-

logical requirements but also by high-vertical-resolution. After the introduction of the new Vaisala RS41 radiosonde, GRUAN

is currently developing the corresponding data processing for the new instrument (Dirksen et al., 2019).

Although temperature readings made by Vaisala RS41 radiosonde at GRUAN stations are given at 1 s resolution, for various

reasons, missing data are sometimes present along the atmospheric profile. If one is led to interpolate the missing measure-30

ments, since an interpolation error is implied, the related uncertainty is to be considered in the uncertainty budget.

The interpolation of atmospheric profiles has been considered in the literature from various points of view. In some cases,

interpolation is applied to the measurement uncertainty. For example, considering the AERONET Version 3 aerosol retrievals,

Sinyuk et al. (2020) obtain the uncertainty by interpolation of a look up table.

A second and more relevant use of interpolation is related to the measurement itself. In this field, Ceccherini et al. (2018)35

used interpolation for data fusion of Ozone satellite vertical profiles. Interpolation uncertainty and more generally co-location

uncertainty has been computed using simulated profiles. Similarly, in co-location uncertainty of total ozone, Verhoelst et al.

(2015) contemplate interpolation in the so-called OSSSMOSE simulator.

In the frame of radiosonde co-location uncertainty, considering relative humidity, Fassó et al. (2014) used a statistical ap-

proach based on the heteroskedastic functional regression model. Considering pressure, Ignaccolo et al. (2015) extended the40

latter approach to a 3D functional regression approach. In these two papers, the interpolation uncertainty is implicitly assessed

by means of the model error variance.

The comparisons of radiosonde and satellite data are often based on low-vertical-resolution radiosonde profiles measure-

ments such as the data collected within the network of the Universal Rawinsonde Observation Program (RAOB) because of

their global coverage. In some cases interpolation is not required because of the higher vertical resolution of satellite profiles45

(Sun et al., 2010). In other cases, interpolation is required. For example, Finazzi et al. (2019) considered the harmonisation

of the low-vertical-resolution RAOB temperature and humidity radiosonde measurements and the corresponding atmospheric

profiles derived from the Infrared Atmospheric Sounding Interferometer (IASI) aboard Metop-A and Metop-B satellites. In this

frame spline interpolation of RAOB profiles was indirectly assessed through a comparison with GRUAN radiosonde reference

measurements.50

As a common trait of the above literature, interpolation of atmospheric profiles is quite common, but a systematic analysis of

interpolation uncertainty per se is not yet available. A general approach to interpolation is the Geostatistics approach (Cressie

and Wikle, 2011) which is the same as the Gaussian Process (GP) approach (Rasmussen and Williams, 2006) to a large extent.

Its value is due to the fact that it gives optimal interpolation under some conditions. With some variations, the related optimal

interpolation algorithm is based on the autocovariance function characterising also the structure function (Sofieva et al., 2008).55

This approach is often used to interpolate in a higher dimensional space such as the Euclidean plane, the sphere (Alegria et al.,

2017), the three-dimensional Euclidean space or the circular shell representing the atmosphere. Interpolating and forecasting

is sometimes overlapping, in particular this happens when the GP is defined, for example, on time cross a sphere (Porcu et

al., 2016). Interestingly, it can be shown that the spline interpolation is a special case of the GP interpolation (Kimeldorf and
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Wahba, 1970). Another interesting point is that the GP approach comes with a formula for interpolation uncertainty estimation.60

It must be noted that the formula is correctly used if the "true data generation mechanism" is a GP. If the GP is simply "an

approximation" an additional term must be added.

In this paper, the uncertainty of the one-dimensional linear interpolation is discussed integrating two approaches. In the

first stage, the closed form formula of the linear interpolation uncertainty is presented under the assumption that the observed

atmospheric profile is generated by a GP. In the second phase, thanks to the availability of appropriate data, the GP assumption is65

relaxed and a block-bootstrap estimator is constructed. The approach is valid for any atmospheric profile dataset. Considering

the motivating application, which focuses on temperature readings of Vaisala RS41 at GRUAN sites, the objective of this

paper is to contribute to the understanding of interpolation uncertainty expressed as a function of missing gap length, missing

frequency, altitude and site.

To do this, "good" launches without missing data are used. Each profile is divided in a learning set and a testing set,70

the latter being used as missing data for interpolation uncertainty assessment. This is done for various missing patterns that

resemble observed "bad" launches, which are characterised by many missing measurements. In particular, increasing gap

average lengths will be analysed. The testing sets will be extracted using a block-bootstrap cross-validation scheme. Hence

although the numerical results are specific to Vaisala RS41 temperature data set, the approach is quite general and may be

applied to other sensors.75

The rest of the paper is organised as follows. Section 2 motivates the paper by discussing the soruces of gaps in data reception

and their impact in GRUAN data processing. Section 3 introduces the Gaussian Process (GP) set up used to provide the formal

assessment of linear interpolation uncertainty and to introduce the GP interpolation with its standard deviation. Section 4

presents the data sets, which are related to Vaisala RS41 observations at seven GRUAN sites and are used in the empirical

analysis. Section 5 describes the re-sampling technique able to simulate random patterns of missing values of different duration.80

Section 6 describes the cross-validation scheme essential for the uncertainty computations and the model selection, which is

discussed in Section 7. Section 8 presents the results, compares the behaviour of the two interpolation techniques and proposes

an empirically corrected formula for interpolation uncertainty. Eventually, Section 9 draws some conclusions.

2 Data processing and interpolation

There are several possible reasons for temporary gaps in data reception. These include the presence of obstacles that may inter-85

fere with radio transmission to the ground station (trees, buildings, local geography), extraordinary meteorological conditions,

or instrument-related reasons. Considering an ascent as a trajectory rather than a vertical profile, it seems evident that the prob-

ability for the occurrence of data gaps tends to increase with the horizontal distance from the launch site (weaker radio signal),

which can significantly exceed the vertical distance depending on wind conditions. The GRUAN Lead Centre conducted a sta-

tistical analysis for the occurrence of data gaps in RS41 radiosonde soundings performed at 15 GRUAN stations in the period90

2014-2019. The results show that gaps occur in more than 20% of the soundings, virtually independent of the height ranges,

with the majority (>95%) having less than 15 gaps per 1000 s (=1000 data points). Up to 30 km, gaps >10 s only play a role
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Figure 1. Top left: Frequency distribution of the number of data gaps (independent of gap length). Bottom left: Frequency distribution of the

length of the largest gap identified in a sounding. The two right panels show the corresponding cumulative frequencies.

in about 5% of the ascents, however the occurrence of larger gaps generally increases with height (distance). Figure 1 gives an

example for the stratospheric height section between 20 km and 25 km, where 13’667 profiles are included.

The GRUAN data processing is based on the raw data from the physical radiosonde’s sensors, namely temperature, relative95

humidity, positioning data (GNSS), and also pressure if an on-board sensor is present. Corrections to the raw data for known or

experimentally evidenced systematic effects are applied. For example adjustments from pre-flight ground checks, corrections

of sensor time lags, or solar radiative effects. Some intermediate variables are in turn calculated (e.g., effective air speed or

ventilation) as components of the correction algorithms. A number of secondary variables are finally derived, for example

altitude, geopotential height, water vapour content, or wind components. At different processing stages, smoothing filters are100

applied for estimation and separation of noise components of the signal. Through all these steps the regular grid of the measured

raw data is maintained, that is, all variables and uncertainties in the product variables are given with the original high resolution.

This procedure inevitably leads to certain technical difficulties if data gaps randomly or intermittently occur. For example,

smoothing with certain filter kernel lengths easily may introduce effects which are difficult to handle when running over gaps on

the regular grid or - even more - when running into larger gaps comparable to or exceeding the actual kernel length. The same105

applies to uncertainty estimates to be associated with the averaged (smoothed) values. Another example is related to magnitudes

which are calculated cumulatively with height, such as pressure derived from positioning, temperature, and humidity data, or

the integrated water vapour content. As a consequence there may be processing-related irregularities or deviations in the profile
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data and uncertainty estimates, the systematics and extent of which is difficult to predict. Depending on the purpose for which

the GRUAN data product are further used (e.g., process studies based on high-resolution data, or average-based long-term110

studies for climate) such systematics may have different impact.

3 Interpolation uncertainty

In this section, formulas of the uncertainty for both linear and stochastic interpolation are considered under some stochastic

assumptions about the data generation mechanism.

In particular, considering a radiosonde flight, we assume that t= 1, ...,T is the flying time in seconds from take off and y(t)115

is the observed temperature in Kelvin given by the following measurement error equation

y(t) = s(t) + ε(t). (1)

In model (1), s(t) is the unobserved "true" temperature with a local dynamics described by a Gaussian Process (GP) char-

acterised by a power exponential autocovariance function (Cressie and Wikle, 2011; Rasmussen and Williams, 2006). Hence,

conditionally on some unobserved time-dependent atmospheric conditions denoted by a(t), the GP y(t) has the following120

autocovariance function:

γ(t− t′,a(t)) = σ2
s exp(−|t− t′|p/θp) +σ2

ε I(t= t′) (2)

where p= 1,2, the dependence on a(t) is omitted in the right hand side for notational simplicity, and I is the indicator function,

that is I = 1 if t= t′ and zero else.

In (2), the variance of y(t) is given by125

σ2
y = σ2

s +σ2
ε (3)

where σs > 0 is the standard error of s(t), and σε ≥ 0 is the measurement uncertainty, σ2
ε = E(ε2). For the instruments installed

on the Vaisala RS41 it is known that the sensor-intrinsic "noise" of a temperature sensor is very small (< 0.01 K), hence we

expect to find a small σε for the data of this paper. In addition, θ > 0 represents the atmospheric persistence range.

The GP is characterised by the parameter set Ψ = (θ,σs,σε), which is assumed to be slowly varying in time, hence charac-130

terising locally the atmospheric conditions a(t):

Ψ = Ψa(t). (4)

Note that, from the practical point of view, the random error ε is a Gaussian white noise and σε represents the random un-

certainty, while (vertically) correlated errors could be confused with s(t). This point will be considered further in Section

8.135
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3.1 Linear interpolation

Considering an observation gap in the interval (t−, t+), the linear interpolator at time t, for t− ≤ t≤ t+, is straightforwardly

defined by the following formula

m(t) = (1−α(t))y−+α(t)y+ (5)

where, y± = y(t±), and α(t) = t−t−
t+−t− .140

In general, the squared interpolation uncertainty

u(t)2 = E[(m(t)− s(t))2] (6)

is defined in terms of the true signal s(t) and may be related to the interpolation Mean Square Error

MSEy(t)2 = E[(m(t)− y(t))2]

by the well known relation u(t)2 =MSEy(t)2 +σ2
ε .145

Since, using field observations, only MSEy(t) may be directly estimated, if the measurement uncertainty σε is unknown,

estimating u(t) may be an issue, and a statistical modelling approach is important.

Assuming that the true signal s is a GP as above discussed, the Appendix shows that the linear interpolation uncertainty

given in Equation (6) may be computed by the following Standard Error (SE) formula:

SE(t)2 = 2σ2
y

{
1−α+α2

}
150

+ 2
{
α(1−α)γ(t+− t−)−αγ(t+− t)− (1−α)γ(t− t−)

}
(7)

+ σ2
ε

where, with abuse of notation, α= α(t). Note that, SE(t)2 = u(t)2 if the GP assumption is satisfied, but two different symbols

are used because in Section 8 this assumption will be relaxed.

Equation (7) defines a function of t which depends on the atmospheric persistence modelled by γ and the gap size t+− t−.155

Since γ is not continuous in zero, the same happens to SE(t) at the gap interval borders.

Figure 2 considers the case where s(t) is a white noise, that is γ(h) = 0 for h 6= 0 and γ(0) = σ2
y . At the gap borders, the

interpolation is error free, m(t±) = y±, and the uncertainty is u(t±) = σε. For t strictly inside the gap interval, we have

3
2
σ2
y +σ2

ε ≤ u(t)2 < 2σ2
y +σ2

ε

where the minimum is achieved in the center of the gap interval. In this particular case, the uncertainty range does not depend160

on the gap size.

The above thresholds may be overcome in the presence of correlation. In general for a GP with θ > 0 the uncertainty depends

both on the GP characteristics and the gap size. As an illustration, using σs = 0.5K, σε = 0.01K, and θ = 3s, Figure 3 shows

how the interpolation uncertainty depends on the gap size and on the distance from the observations in presence of short

correlation range. More interestingly for applications, Figure 4 shows that the linear interpolation uncertainty strongly depends165

on the correlation range.
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Figure 2. Linear interpolation SE, Equation (7), as a function of the distance from observations for a white noise process with σs = 0.5K

and σε = 0.01K. Three gap sizes are considered (45, 15 and 5 s) .

3.2 Gaussian Process interpolation

The assumption that the temperature profile y(t) is a realisation of a GP may be extended to cover for a non constant mean so

that, using some basis functions h(), model (1) is rewritten as

y(t) = h(t)′β+ s(t) + ε(t)170

with parameter set Ψ = (β,θ,σε,σs). In this context, Equation (3) defines the variance of y(t) conditional on h(t)′β, namely

V ar(y(t)|h(t)′β). Let us denote the set of all non missing observations during the radiosonde flight by Y , the matrix of the

corresponding basis functions by H , and assume that Ψ is known. Then the GP interpolation of a missing observation at time

t∗ is given by the well known conditional expectation formula

m(t∗) = E(y(t∗)|Y ) = h(t∗)′β+ Σ′y(t∗),Y Σ−1
Y ,Y (Y −Hβ) (8)175

where ΣY ,Y is the covariance matrix of the good observations Y |Hβ, and Σy(t∗),Y is the covariance vector between the

missing observation y(t∗)|h(t+)′β and Y |Hβ. In addition to point estimation, the GP approach provides also the interpolation
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Figure 3. Linear interpolation SE, Equation (7), as a function of the distance from observations for a GP with σs = 0.5K, σε = 0.01K, and

θ = 3s. Three gap sizes are considered (45, 30 and 15 s) .

standard error:

SE(t∗)2 = E(m− y)2 = σ2
y −Σ′y(t∗),Y Σ−1

Y ,Y Σy(t∗),Y (9)

which can be used as an estimate of the interpolation uncertainty, provided the GP is a good description of the problem under180

study and Ψ is approximately known.

4 Data

Two datasets provided by the GRUAN Lead Centre (www.gruan.org/network/lead-centre), and related to the seven GRUAN

stations of Table 1, are considered here. One is named Few_nan in this paper and contains 276 temperature profiles charac-

terised by "little" missing data. The second one, named Many_nan, contains 273 profiles with "many" missing.185

As a preliminary analysis of the "bad" dataset Many_nan, Figure 5 gives the distribution of the fraction of missing data per

launch. The average missing fraction is 0.13, and the average gap length is 3.6 s. These values will be used to set the parameters

of the simulated gap patterns of Section 5.
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Figure 4. Linear interpolation SE, Equation (7), as a function of the distance from observations for a GP’s with σs = 0.5K, σε = 0.01K,

and θ = 3s,3min,9min and 30min.

For further interpolation analysis, those profiles in Few_nan with very little missing gaps are selected. In particular, the

L=177 launches which have gaps shorter than 5 seconds, and a total of less then 10 missing values per profile have been used190

in this paper. The profile duration distribution is depicted in Figure 6, with an average profile duration of about 6000 seconds.

This gives a total of more than one million measurements, which will be amplified using the bootstrap technique of Section 5.

5 Block-bootstrap cross-validation scheme

The block-bootstrap is a well-known technique (Politis and Romano, 1994; Mudelsee, 2014) for generating synthetic time se-

ries replicates, and, in this paper, is used to construct the cross-validation scheme. Let us consider a fully observed temperature195

profile, without missing values and, hence, measurements y taken every second from take off, t= 1, ...,T : Y = (y(1), ...,y(T )).

This section presents a rule for partitioning each original profile Y as follows

Y −→ [Y L,Y ∗] (10)
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Figure 5. Frequency distribution of missing data fraction in Many_nan dataset.

Station Code Country Imported Selected

Beltsville BEL USA 33 15

Lauder LAU NZ 32 32

Lindenberg LIN DE 54 45

Ny-Alesund NYA DE/FR 35 35

Payern PAY CH 100 30

Lamont SGP USA 18 16

Sodankylä SOD FI 4 4

276 177
Table 1. GRUAN stations and launch numbers from Few_nan dataset.

10

https://doi.org/10.5194/amt-2020-161
Preprint. Discussion started: 3 July 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 6. Frequency distribution of profile duration in Few_nan dataset.

where Y L is the learning set – used for fitting – and Y ∗ is the validation set – used for testing and bootstrap-correction. In

order to construct the testing set, nG gap sequences of average duration µG[ s] are extracted from the temperature profile Y200

and moved to the testing set Y ∗. Observe that, if the testing size (average) fraction is denoted by f , then nG = T × f/µG.

The gap scheme is obtained by randomly generating and sorting the nG gap starting points 1≤ t∗1 ≤ ...≤ t∗nG
≤ T and by

building, for each of them, a gap sequence

t∗j , ..., t
∗
j + gj

where the gap duration gj is aGeometric random variable with mean µG. In particular the length gj is truncated at t∗j+1−t∗j−1205

to avoid overlapping among different gap sequences. Let the resulting testing set index be denoted by t∗. Ignoring above

truncation, t∗ has random dimension n∗ = nG +
∑nG

j=1 gj and expected dimension E(n∗) = T × f . Hence, the partitioning

rule in (10) is defined by the testing set Y ∗ = (y(t), t ∈ t∗) and the learning set Y L = (y(t),1≤ t≤ T,t /∈ t∗).

We are interested in collecting information about the interpolation error in a dense vertical grid, even if the testing fraction

f is small. To do this in the application developed below, the above random extraction process is repeated B times. So that for210

each observed profile Y , B replications are generated, namely

[Y L
b ,Y

∗
b ], b= 1, ...,B.
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These replications give a statistical basis to assess the interpolation uncertainty at all altitudes also for those stations with a

limited number of available profiles.

6 Cross-validation215

The main results of the next section are obtained using linear interpolation of temperature vs time, based on the neighbouring

values, and GP interpolation given by the expectation of Y ∗ conditionally on Y L. As in the previous section, let us denote

temperature, in Kelvin, by y and flying time, in seconds, by t= 1, ...,T . The total flying time T depends on the single profile

and station but suffixes are not used here for notational simplicity. For each station s= 1, ...,S and launch l = 1, ...,Ls, we

have the interpolated values220

ŷ(t∗|s, l) =mj(t∗|s, l)

where j = 1,2 denotes the linear or the GP interpolation respectively.

Each bootstrap replicate [Y L
b ,Y

∗
b ], b= 1, ...,B is used first to estimate the GP model coefficients Ψ by the maximum

likelihood method as explained in the next section and denoted by Ψ̂. Then, the interpolated values ŷ(t∗) =m2(t∗|Ψ̂) are

computed for the simulated missing times t∗ in the test data set, Y ∗b , and the cross-validation interpolation errors are computed225

as follows:

e= e(t∗|s, l, b) = ŷ(t∗|s, l, b)− y(t∗|s, l).

As a result, the interpolation MSE and the corresponding Root MSE (RMSE) are classified by station, altitude and gap length:

MSE(ALT,s,µG) = avg(e2|ALT,s,µG) (11)

whereALT is the atmospheric output layering with 1km resolution and avg(·|s,ALT ) is the average of all the cross-validation230

terms with alt ∈ALT , launched from station s and generated using gap size µG.

7 Modelling details

The GP interpolator depends on the local structure m2(t) =m2(t|Ψa(t)), where Ψa(t) is as in Equation (4). In order to make

teh local GP modelling feasible and computationally efficient a block-partitioning structure has been assumed. This amounts

at dividing the atmosphere in layers, which may be different from the output layers of the previous section. Each atmospheric235

layer identifies a block and the variance-covariance matrix for the entire profile is assumed block diagonal with a constant

parameter set Ψa in each layer block. This is a special case of the spatial partitioning approach (Heaton et al. , 2019), but

continuity at the layer borders is ignored here because borders have been deliberately located far from the gaps.

The GP model selection considered the two autocovariance functions γ in Equation (2), various basis functions h(), and

various layering’s of the atmosphere to define the appropriate concept of local model Ψa(t) of Equation (4). For each layer a,240
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local estimation has been performed using the maximum likelihood method. The above alternatives have been optimised using

the RMSE applied to the block-bootstrap replicates of Section 5.

Considering the layering problem, the results where little sensitive to layer size variations and a 400" layer size has been used,

as it provides both a reasonable computing time and a satisfactory atmospheric adaptation. The exponential autocovariance

function with p= 1 resulted in a smaller cross-validation RMSE comparing to the square exponential one (p= 2).245

The best results for the basis functions have been obtained with a piecewise linear function of time. In this regard, also other

predictor set-up have been considered: a piecewise quadratic function of time and vector predictor set-ups including altitude,

coordinates and wind. Using these more complex models did not result in relevant improvement of RMSE or, worst, it resulted

in problems of singularity of the information matrix at various combinations of stations and layers. Hence, invoking Okham’s

razor and looking for a robust and general model set-up, we concluded for the simplest piecewise linear function of time.250

8 Results

The bootstrap champaign of this section is aimed at assessing the uncertainty of the linear interpolation, Equations (5) and

(7), and of the GP interpolation, Equations (8) and (9). The cross-validation design is based on a 3× 3 combination of gap

sizes µG and missing fractions f , centred on the characteristics of the Many_nan dataset. In detail, we use µG = 4,10,30,60

sec and f = 0.05,0.13,0.20. Moreover, in order to have uncertainty estimates with a high vertical density, the 2-fold block-255

bootstrap validation of Section 5 is replicated B = 50 times giving a data set with more than 51 million measurements for each

combination of µG and f .

Figure 7 depicts the overall linear interpolation uncertainty at each GRUAN station for the above 3× 3 simulation design

using the RMSE. The clustered pattern of the nine curves clearly shows that the missing fraction f has a minor influence on

the uncertainty in the range 0.05−0.20, which is the range of interest for meaningful practical applications. Hence for the rest260

of the paper, we consider only the Many_nan dataset missing fraction, f = 0.13.

Table 2 summarises the RMSE of both the linear and GP interpolation. Overall, the average interpolation uncertainty is

smaller than 0.1K for little gaps (µG = 4”), increases to about 0.16 K for medium gaps (µG = 10”), and increases further to

0.35 K and 0.58 K for large and very large gaps (µG =30" and 60") respectively. Considering jointly Figure 7 and the latter

table, it can be observed that Lamont, Payerne and Lauder have slightly larger values at all gap sizes. Moreover, Table 2 shows265

that the two interpolation approaches have a very close RMSE. In fact, not only they have close performances, but, for any

practical purpose, they are also exchangeable, since the mean absolute difference between the two is smaller 0.01 K. Hence in

the rest of the paper, we do not replicate figures and results for both interpolation methods.

Figure 8 depicts the vertical behaviour of interpolation uncertainty at GRUAN stations, with average gap size increasing

from panel a) to panel c). As expected the uncertainty has a minimum near the tropopause. Moreover, after a fast increase, it270

stabilizes at a value often larger than the lower atmosphere uncertainty level. It is worth observing that the various stations have

globally similar values, but again Lamont, Payern and Lauder have often the largest values.
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µG = 4′′ µG = 10′′ µG = 30′′ µG = 60′′

Station Profiles GP Linear GP Linear GP Linear GP Linear

BEL 15 0.084 0.088 0.159 0.160 0.338 0.363 0.590 0.604

LAU 32 0.106 0.107 0.180 0.184 0.370 0.389 0.599 0.612

LIN 45 0.073 0.074 0.145 0.145 0.314 0.324 0.548 0.542

NYA 35 0.072 0.073 0.127 0.130 0.269 0.269 0.463 0.460

PAY 30 0.098 0.098 0.180 0.181 0.370 0.391 0.659 0.658

SGP 16 0.107 0.109 0.189 0.187 0.401 0.420 0.703 0.698

SOD 4 0.074 0.076 0.137 0.138 0.281 0.363 0.426 0.478

177 0.087 0.088 0.159 0.160 0.334 0.349 0.574 0.576

Table 2. Comparison of cross-validation RMSE between GP and linear interpolation for increasing average gap length µG = 4,10,30 and

60s. Cross-validation is based on B = 50 block-bootstrap replications, each with missing fraction f = 0.13.

Figure 7. Linear interpolation uncertainty by GRUAN station and average gap size µG = 4,10 and 30s. The cross-validation uncertainty

(y-axis) is based on the Root Mean Square Error (RMSE), for missing fractions f = 0.05,0.13 and 0.20.
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Figure 8. Linear interpolation uncertainty of GRUAN stations. The cross-validation uncertainty (x-axis) is based on the Root Mean Square

Error (RMSE) and missing fraction f = 0.13. Panel a: average gap size is µG = 4s; panel b: average gap size is µG = 10s; panel c: average

gap size is µG = 30s.
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In order to re-interpret the GP-based linear interpolation uncertainty formula of Figures 3 and 4, we consider the ensemble of

all the estimated local GP model parameters set Ψ from the entire cross-validation exercise. Coherently with the known small

intrinsic error declared by Vaisala, the top panel of Figure 9 shows very small values of σε. Moreover, from the second panel of275

the same figure, we see that the values σs < 1 are common and in particular σs = 0.5 used in Figures 3 and 4 is quite plausible.

Eventually, the bottom panel of Figure 9 shows that the correlation range θ may be easily between one and 15 minutes.

8.1 Interpolation distance

In general, the connection between the uncertainty curves of Figures 3 and 4 and the cross-validation evidence is worth to be

studied. Considering both the gap size and the distance from the observations at various altitudes gives rise to hard-to-manage280

curve plots and a multiplicity of results. For this reason, the subsequent analysis is based on the "interpolation distance" in

sec, which is denoted by d and is given by the geometric mean of the temporal distances of each missing data from the closest

observations y− and y+ in the notation of Section 3.

Figure 10 depicts the cross-validation RMSE of the linear interpolation as a function of this distance by altitude, namely

MSE(d|ALT ) = avg(e2|d,ALT ) (12)285

where avg(·|ALT,d) is the average of all the cross-validation terms with alt ∈ALT and interpolation distance d. We note that,

in order to have high sampling information for both low and high interpolation distances, the graph is obtained by merging the

block-bootstrap simulations obtained for µG = 10 and 30 s. Moreover, the graph is limited to 70" because there is a reduction

of cross-validated data, especially at high altitudes. Of course, using the same approach, longer interpolation distances may be

easily explored.290

In addition, Figure 11 depicts the corresponding graph for the linear interpolation quadratic average of SE(t∗) = SE(t∗|s, l, b),
given by Equation (3) at cross-validation time t∗, station s, launch l and bootstrap replication b, namely

SE(d|ALT ) =
√
avg(SE(t∗|s, l, b)2|d,ALT ). (13)

The corresponding graph for the GP-SE of Equation (9) is not reported here because, not only the two interpolation methods

are exchangeable, as noticed above, but also their SE’s give very close results, with a mean absolute difference between the295

two smaller than 0.005 K. It may be noted that, although the above two graphs have a similar increasing behaviour, the SE

systematically underestimates the interpolation uncertainty. This is due, primarily to the GP model approximation for the

present case study and, secondarily, to estimation uncertainty. Hence, we propose a corrected uncertainty estimate given by

u(t∗)2 = SE(t∗)2 + (MSE(d|ALT )−SE(d|ALT )
2
). (14)

This semi-parametric bootstrap uncertainty estimate extracts information both from the average cross-validation performance300

at a certain altitude and interpolation distance and from the single profile behaviour approximated by the GP process.
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Figure 9. Distribution of estimated GP model parameters from all bootstrapped profiles and all atmospheric layers. Top panel: σε [K]; centre

panel: σs [K]; bottom panel: correlation range θ [min]. The average gap size is µG = 10s and the missing fraction is f = 0.13.
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Figure 10. Cross-validation RMSE of linear interpolation by altitude [m] and interpolation distance [sec]. The x-axis is given by the geo-

metric mean of the distances of each missing data from the closest "good" data, y− and y+. The graph is obtained my merging the data sets

with average gap sizes µG = 10 and 30s.

8.2 Practical aspects

As an illustration of the method, the profile of Sodankylä site on 2017-03-03 12:00 is considered in Figure 12, left panel. This

profile has T=4722 measurements and no original missing values. Using the block-bootstrap, 563 measurements have been

deleted and considered as pseudo-missing generating gaps between 1 and 24 s to be interpolated. From a practical point of view,305

such a missing rate and gap lengths can be considered a relatively common case, yet serious, for interpolation. Figure 12, right

panel, shows both± the GP uncertainty (7), and± the Bootstrap uncertainty (14), computed at the interpolated pseudo-missing

values. In doing this computation, formulas (12) and (13) are implemented as lookup tables (LUT) with entries geometric

distance and altitude. Figure 13 focuses on the above profile around 22 Km height and shows the interpolation uncertainty of

a single point gap, two small gaps and three larger gaps.310

It follows that the implementation of a GRUAN data processing giving interpolated temperature profiles with their uncer-

tainty requires some efforts which are divided into two different phases. First, a massive GP off-line computation is needed
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Figure 11. Linear interpolation SE by altitude [m] and interpolation distance [s]. The depicted SE is the quadratic average of formula (7) for

each altitude and interpolation distance in the validation data set. The interpolation distance is given by the geometric mean of the distances of

each missing data from the closest "good" data, y− and y+. The graph is obtained my merging the data sets with average gap sizes µG = 10

and 30s.

to prepare the LUT related to Equations (12) and (13). Second, for each profile an on-line local GP calibration is needed to

provide the SE (7) for the interpolated values. After that, Equation (14) easily gives the corrected interpolation uncertainty.

9 Conclusions315

This paper gives a multifaceted assessment of the interpolation uncertainty of Vaisala RS41 temperature profiles at various al-

titudes using an extensive data set coming from seven GRUAN stations. Moreover, it provides a general frame for interpolation

of generic atmospheric profiles. Two complementary approaches are developed and integrated.

The first one is a cross-validation approach based on block-bootstrap, which shows that the average of the root mean square

error of linear interpolation is about 0.1 K for small gaps and increases up to 0.58 K for gaps of an average duration of320

60". These results may be made operational as lookup tables characterising interpolation uncertainty with entries altitude and

’interpolation distance’.
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Figure 12. RS42 temperature profile at Sodankylä site on 2017-03-03 12:00. Left panel: observation is in blue and block-Bootstrap pseudo-

missing are the red stars. Right panel: ± linear interpolation uncertainty of pseudo-missing values; GP uncertainty (7) is in blue; Bootstrap

uncertainty (14) is in orange.
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Figure 13. Detail of RS42 temperature profile at Sodankylä site on 2017-03-03 12:00, around 23 Km altitude. Observation is in blue and

block-Bootstrap pseudo-missing are the red stars; linear interpolation is in black; ± GP uncertainty (7) is in blue; ± Bootstrap corrected

uncertainty (14) is in orange.
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Since the cross-validation outputs are averages, the individual contribution to the uncertainty is not considered. Hence,

the second approach addresses this point using Gaussian Process computations. This allows obtaining two formulas for the

interpolation uncertainty. One is the uncertainty of the linear interpolation, and the other one is based on GP-interpolation. For325

the Vaisala RS41 high-vertical-resolution data, they result to be very close and, hence, interchangeable.

Integrating the above two approaches, a bootstrap-corrected formula for the individual interpolation uncertainty is proposed.

Based on these results, GRUAN data processing could implement interpolated temperature profiles, uncertainty included.

The extension of this approach to other essential climate variables (ECV) and/or other instruments requires some considera-

tions. From the modelling point of view, provided enough field data are available, the extension is relatively straightforward. In330

fact, the approach is quite general, and model selection and optimisation are data-driven. Hence similar results may be expected

for temperature profiles obtained by other instruments, provided that vertical resolution and instrumental error are comparable

to the present case. Further, similar results are also expected for other smooth variables, such as pressure.

On the other side, the interpolation uncertainty could be larger for those ECV which are known to have large variations

also in the small scale. For example, relative humidity commonly shows highly intermittent profiles in the troposphere with335

very large and very fast changing gradients. In these cases, we can expect that the cross-validation uncertainty could be large

even for small gaps. In addition, the vertical autocorrelation could have a shorter range and the corresponding GP model could

provide interpolation uncertainties close to the white noise case considered in Section 3.
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Code and data availability. TEXT

The underlying MATLAB code is available from the author upon request. The data are available from the GRUAN Lead340

Center, www.gruan.org.

Appendix A: Linear interpolation uncertainty

To see Equation (7), let us rewrite the interpolation error of Equation (6) as follows:

m(t)− s(t) = αy+ + (1−α)y−− (y(t) + ε(t)) = a′u

where α(t) = t−t−
t+−t− as in Section 3.1, a′ = (α(t),1−α(t),−1,+1) is a vector of constants for fixed times t− ≤ t≤ t+ and

u′ = (y(t+),y(t−),−y(t),+ε(t)) is a stochastic vector. With these symbols, Equation (7) may be written as:

SE(t)2 = E(m(t)− s(t))2 = a′Σua

where Σu is the variance-covariance matrix of u given by

Σu =




σ2
y γ(t+− t−) γ(t+− t) 0

σ2
y γ(t−− t) 0

σ2
y 0

σ2
ε



.

The conclusion follows by straightforward algebra.
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